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HEAT FLOW GEOMETRY
|

X=a X=b

?hree-slab heat flow geometry.

Fig. D.1.
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Boundary conditions

¥ihyt) = 0, n(=b,t) =0
Jump conditions
¢(a,t) = ¥(a,t) o¢(-a,t) = n(-a,t)
)‘c?x(a,t) o 8 Yx(aat) )\(Px(—avt) = Anx(-aat)‘.

(Ay A are thermal conductivities.)

Define the Laplace transform of ¢ Dby

$ (8,x) = Jw' ¢(i,t) e 5% 3¢
0

Multiply the partial differential equation for ¢ by N

~and integrate over all time:

@ ® 2.
| I e‘St(EE) 3 = k j (Q—g) e 5% gt
(o] "atx (6] 'Bx £
| e 1
Integration by parts gives -9(x,0) + s® = k o >
dx

We now have an ordinary differential equation for ¢ ,

2 il 4
(iLﬁ- - ﬁ)i = - T%" Similar results are obtained for the
dx

other regions. The solutions to the differential equations

for the Laplace transforms can be expressed:

T oA LR
Region 1, @(s,x) = A cosh(px) + B sinh(px) + _1 , us(ﬁ)
s
Region 2, (s,x) = C cosh(upx) + D sinh(upx) + -2 » B = (£)
' s

P
Region 3, H = E cosh(upx) + F sinh(upx) + -2
S

After some effort, the coefficients can be found by applying

the several conditions of the problem. Then the inversion



