HEAT FLOW GEOMETRY

Fig. D.l. Three-slab heat flow geometry.

Boundary conditions

$$
\psi(b, t)=0, \quad \eta(-b, t)=0
$$

Jump conditions

$$
\begin{aligned}
& \varphi(a, t)=\psi(a, t) \quad \varphi(-a, t)=\eta(-a, t) \\
& \lambda \varphi_{X}(a, t)=\Lambda \psi_{X}(a, t) \quad \lambda \varphi_{X}(-a, t)=\Lambda \eta_{X}(-a, t) . \\
& (\lambda, \Lambda \text { are thermal conductivities. })
\end{aligned}
$$

Define the Laplace transform of φ by

$$
\Phi(s, x)=\int_{0}^{\infty} \varphi(x, t) e^{-s t} \partial t
$$

Multiply the partial differential equation for φ by $e^{-s t}$ and integrate over all time:

$$
\int_{0}^{\infty} e^{-s t}\left(\frac{\partial \varphi}{\partial t}\right)_{x} \partial t=k \int_{0}^{\infty}\left(\frac{\partial^{2} \varphi}{\partial x^{2}}\right)_{t} e^{-s t} d t
$$

Integration by parts gives $-\varphi(x, 0)+s \Phi=k \frac{d^{2} \Phi}{d x^{2}} \quad$.
We now have an ordinary differential equation for Φ, $\left(\frac{d^{2}}{d x^{2}}-\frac{s}{k}\right)_{\Phi}=-\frac{T_{1}}{k}$. Similar results are obtained for the other regions. The solutions to the differential equations for the Laplace transforms can be expressed:

$$
\begin{aligned}
& \text { Region 1, } \Phi(s, x)=A \cosh (\mu x)+B \sinh (\mu x)+\frac{T_{1}}{s}, \mu \equiv\left(\frac{s}{k}\right)^{1 / 2} \\
& \text { Region 2, } \Psi(s, x)=C \cosh (\mu p x)+D \sinh (\mu p x)+\frac{T_{2}}{s}, p \equiv\left(\frac{k}{\mu}\right)^{1 / 2} \\
& \text { Region 3, } H=E \cosh (\mu p x)+F \sinh (\mu p x)+\frac{T_{2}}{s} .
\end{aligned}
$$

After some effort, the coefficients can be found by applying the several conditions of the problem. Then the inversion

